

Highlights from RHIC Spin Program

Ming Xiong Liu Los Alamos National Lab

- Longitudinal spin program

- Transverse spin program

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory

> **R-HI** New state of matter **QGP** De-confinement

RHIC is a QCD lab

2

Highest Energy Polarized Proton Collider @RHIC

Experimental Observables

Asymmetries

- PHENIX and STAR: all
- BRAHMS: transverse beams only

The PHENIX Detectors

The STAR Detectors

- Time Projection Chamber |η|<1.6
- 2.5<|η|<4.0 Forward TPC |η|<1 |η|<1
- Silicon Vertex Tracker •
- Barrel EMC ۲
- ٠
- •
- Forward Meson Spectr. $2.5 < \eta < 4$.

RHIC Spin Run History

	Pol	L(pb^-1)) Results		
2002	15%	0.15	first pol. pp collisions!		
2003	30%	1.6	pi^0, photon cross sectio A_LL(pi^0)	n,	Run9 500 GeV
2004	40%	3.0	absolute beam polarizati	on 50	STAR (not singles corrected)
			with polarized H jet	27 50 iu 40 30	Physics
2005	50%	13	large gluon pol. ruled ou	20 10 0	
			(P^4 x L = 0.8)	3/5	3/12 3/19 3/26 4/2 4/9 Calendar time [2009]
2006	60%	46	first long spin run		2006 P=60%
			(P^4 x L = 6)	d 40 +	
2007			no spin running		
2008	50%	20	(short) run	n 20	
2009	500GeV	/200GeV	first W measurements	Nu 10	2003 P=46%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Weeks into run

2003 P=34%

Part I: Longitudinal Spin Physics Program

The proton is viewed as being a "bag" of bound quarks and gluons interacting via QCD Spins + orbital angular momentum need to give the observed spin 1/2 of proton

Ag and Polarized p+p Collisions

The LO result for a_{LL} is nonzero for all subprocesses

cos\vartheta

$$A_{LL} \approx a_{gg} \Delta g^2 + a_{qg} \Delta q \Delta g + a_{qq} \Delta q \Delta q$$

Ming X. Liu 5/31/2010 MENU2010 W&M

Pion production and NLO pQCD

* NLO QCD Calculation Cross-sections consistent with Data

--- CTEQ6M pdf

--- KKP and Kretzer Fragmentation Fcns

* Necessary Confirmation that pQCD can be used successfully at RHIC to extract spin dependent pdf's

RHIC data and Δg

PHENIX pi0

0.06

0.04

0.02

0

-0.02

.Os Alamos NATIONAL LABORATORY EST.1943

A LL

• STAR inclusive jets

Run-5

Run-6

2

4

STAR, PRL 100 232003 (2008)

Impact of RHIC-Spin Program on Δg

- Prior to RHIC-Spin Program, $\Delta g = 1^2$ expected at scale of 1GeV
 - Restored consistency between data and quark model predictions
- Major impact of program
 - such large values of Δg seem to be excluded

 χ^2 distribution as Δg is varied w/in x-range constrained by the RHIC data.

It is interesting to note that the best fit has a zero-crossing at $x \approx 0.1$.

Future New Probes @RHIC: Δg

- Polarized hadron collisions
 - double longitudinal spin asymmetry

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} - \sigma^{+-}} \propto \Delta f_A^a(x_a, Q^2) \otimes \Delta f_B^b(x_b, Q^2) \otimes \frac{d\Delta \sigma_{ab}^{cd}}{dt}$$

- leading-order gluon interactions
 - direct-photon production
 - heavy-flavor production
 - Other channels (light hadrons etc.)

W[±] Production and A₁ @500GeV

Ming X. Liu 5/31/2010 MENU2010 W&M

First W[±] Measurements from Run9 500 pp!

2

RHIC 20,000 GeV beam

Ming X. Liu 5/31/2010 MENU2010 W&M

LOS AIAMOS NATIONAL LABORATORY EST. 1943

Theory: K_T vs Collinear Factorization

$A_N P_T$ Dependence Remains as a Challenge

Charm SSA to Probe Gluon Sivers Distribution

D meson Single-Spin Asymmetry:

- Production dominated by gluon-gluon fusion
- Sensitive to gluon Sivers distribution
 - PHENIX-2006 data ruled out the max. gluon Sivers
 - Much improved results expected (Run2006+2008)

Future Transverse Spin Physics: A_N (Drell-Yan -> $\mu^+\mu^-$)

"Transverse-Spin Drell-Yan Physics at RHIC" (http://spin.riken.bnl.gov/rsc/write-up/dy_final.pdf)

 Important test at RHIC of recent <u>fundamental QCD predictions</u> for the Sivers effect, demonstrating... <u>attractive vs repulsive color charge forces</u>

Summary and Outlook

- Spin puzzle
 - Gluon polarization
 - Large Δg ruled out
 - New probes, direct-photon, open charm ...
 - Larger x-range in the future
- Sea quark polarization
 - First W asymmetry observed
 - Much improved results in the future
- Transverse spin physics
 - Large SSAs observed at RHIC
 - New study of QCD dynamics
 - Charm SSA
 - Drell-Yan SSA

backup

...but rising P_T dependence is not predicted by the same fits

Attractive vs Repulsive "Sivers" Effects Unique Prediction of Gauge Theory !

Critical Role of VTX/FVTX for Drell-Yan

Ming X. Liu 5/31/2010 MENU2010 W&M

Transverse Physics W^{+/-} & Z⁰ SSA @500GeV ?

FIG. 3: Left: SSA of lepton pair production as a function of the pair's invariant mass Q. Right: SSA of lepton pair accumulated Ming X: 214 3/94/2010 WEN 27

RHIC/PHENIX Spin Run History and Prospect

RHIC-RUN	Pol(%)	L(pb⁻¹)	Results		
2002	15%	0.15	first pol p+p run@RHIC! Transve	rse	Goals
2003	30%	0.35	π^0 cross section, $A_{LL}(\pi^0)$		800pb ⁻¹ @500GeV 300pb ⁻¹ @200GeV
2004	40%	0.12	Pol H-Jet, absolute beam polariz	ation	
2005	50%	3.5	$A_{LL}(\pi^0)$ ruled out large Δg , GRSV-	Max-Like	
2006	60%	7.5	first dedicated long spin run		200mb-1@500CaV
	2.7	Tra	nsverse run		70pb ⁻¹ @200GeV
2007			NO spin run		
2008	45%	5.2	short run for HI baseline pp phys	sics	
2009	35%	14	first 500GeV run!		
	55%	16	200GeV CA	D Delivered F	Run9@500GeV

CAD(10.2009): From Run9 experience, reduced the "enhanced" design goals: P=70%, $\mathcal{L} = 3 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$ (or $\approx 7.5 \text{ pb}^{-1}/\text{week}$) at $\sqrt{s} = 200 \text{ GeV}$

12-week Run Delivered: 90pb⁻¹

 $PHENIX(\varepsilon = 1/3) = 30pb^{-1}$

With hardware upgrade, expect to achieve: 18~83 pb⁻¹/week@500GeV

12-week Run Delivered: 220~1000pb⁻¹

 $PHENIX(\varepsilon=1/2) = 100^{-500}pb^{-1}$

Δq and $\Delta \overline{q}$ through W[±] decay

(DOE Milestone HP8, 2013)

Effect of uncertainties on antiquark distributions over asymmetries

already pretty tight bands! (partly from SIDIS)

Daniel de Florian, RSC'09

